The base function as.factor()
is not a generic, but forcats::as_factor()
is. haven provides as_factor()
methods for labelled()
and
labelled_spss()
vectors, and data frames. By default, when applied to a
data frame, it only affects labelled columns.
Arguments
- x
Object to coerce to a factor.
- ...
Other arguments passed down to method.
- only_labelled
Only apply to labelled columns?
- levels
How to create the levels of the generated factor:
"default": uses labels where available, otherwise the values. Labels are sorted by value.
"both": like "default", but pastes together the level and value
"label": use only the labels; unlabelled values become
NA
"values: use only the values
- ordered
If
TRUE
create an ordered (ordinal) factor, ifFALSE
(the default) create a regular (nominal) factor.
Examples
x <- labelled(sample(5, 10, replace = TRUE), c(Bad = 1, Good = 5))
# Default method uses values where available
as_factor(x)
#> [1] Good 2 Bad 2 2 Bad 3 Good Bad 3
#> Levels: Bad 2 3 Good
# You can also extract just the labels
as_factor(x, levels = "labels")
#> [1] Good <NA> Bad <NA> <NA> Bad <NA> Good Bad <NA>
#> Levels: Bad Good
# Or just the values
as_factor(x, levels = "values")
#> [1] 5 2 1 2 2 1 3 5 1 3
#> Levels: 1 2 3 5
# Or combine value and label
as_factor(x, levels = "both")
#> [1] [5] Good 2 [1] Bad 2 2 [1] Bad 3
#> [8] [5] Good [1] Bad 3
#> Levels: [1] Bad 2 3 [5] Good
# as_factor() will preserve SPSS missing values from values and ranges
y <- labelled_spss(1:10, na_values = c(2, 4), na_range = c(8, 10))
as_factor(y)
#> [1] 1 2 3 4 5 6 7 8 9 10
#> Levels: 1 2 3 4 5 6 7 8 9 10
# use zap_missing() first to convert to NAs
zap_missing(y)
#> [1] 1 NA 3 NA 5 6 7 NA NA NA
#> attr(,"class")
#> [1] "haven_labelled"
as_factor(zap_missing(y))
#> [1] 1 <NA> 3 <NA> 5 6 7 <NA> <NA> <NA>
#> Levels: 1 3 5 6 7