read_sav()
reads both .sav
and .zsav
files; write_sav()
creates
.zsav
files when compress = TRUE
. read_por()
reads .por
files.
read_spss()
uses either read_por()
or read_sav()
based on the
file extension.
Usage
read_sav(
file,
encoding = NULL,
user_na = FALSE,
col_select = NULL,
skip = 0,
n_max = Inf,
.name_repair = "unique"
)
read_por(
file,
user_na = FALSE,
col_select = NULL,
skip = 0,
n_max = Inf,
.name_repair = "unique"
)
write_sav(data, path, compress = c("byte", "none", "zsav"), adjust_tz = TRUE)
read_spss(
file,
user_na = FALSE,
col_select = NULL,
skip = 0,
n_max = Inf,
.name_repair = "unique"
)
Arguments
- file
Either a path to a file, a connection, or literal data (either a single string or a raw vector).
Files ending in
.gz
,.bz2
,.xz
, or.zip
will be automatically uncompressed. Files starting withhttp://
,https://
,ftp://
, orftps://
will be automatically downloaded. Remote gz files can also be automatically downloaded and decompressed.Literal data is most useful for examples and tests. To be recognised as literal data, the input must be either wrapped with
I()
, be a string containing at least one new line, or be a vector containing at least one string with a new line.Using a value of
clipboard()
will read from the system clipboard.- encoding
The character encoding used for the file. The default,
NULL
, use the encoding specified in the file, but sometimes this value is incorrect and it is useful to be able to override it.- user_na
If
TRUE
variables with user defined missing will be read intolabelled_spss()
objects. IfFALSE
, the default, user-defined missings will be converted toNA
.- col_select
One or more selection expressions, like in
dplyr::select()
. Usec()
orlist()
to use more than one expression. See?dplyr::select
for details on available selection options. Only the specified columns will be read fromdata_file
.- skip
Number of lines to skip before reading data.
- n_max
Maximum number of lines to read.
- .name_repair
Treatment of problematic column names:
"minimal"
: No name repair or checks, beyond basic existence,"unique"
: Make sure names are unique and not empty,"check_unique"
: (default value), no name repair, but check they areunique
,"universal"
: Make the namesunique
and syntactica function: apply custom name repair (e.g.,
.name_repair = make.names
for names in the style of base R).A purrr-style anonymous function, see
rlang::as_function()
This argument is passed on as
repair
tovctrs::vec_as_names()
. See there for more details on these terms and the strategies used to enforce them.- data
Data frame to write.
- path
Path to a file where the data will be written.
- compress
Compression type to use:
"byte": the default, uses byte compression.
"none": no compression. This is useful for software that has issues with byte compressed
.sav
files (e.g. SAS)."zsav": uses zlib compression and produces a
.zsav
file. zlib compression is supported by SPSS version 21.0 and above.
TRUE
andFALSE
can be used for backwards compatibility, and correspond to the "zsav" and "none" options respectively.- adjust_tz
Stata, SPSS and SAS do not have a concept of time zone, and all date-time variables are treated as UTC.
adjust_tz
controls how the timezone of date-time values is treated when writing.If
TRUE
(the default) the timezone of date-time values is ignored, and they will display the same in R and Stata/SPSS/SAS, e.g."2010-01-01 09:00:00 NZDT"
will be written as"2010-01-01 09:00:00"
. Note that this changes the underlying numeric data, so use caution if preserving between-time-point differences is critical.If
FALSE
, date-time values are written as the corresponding UTC value, e.g."2010-01-01 09:00:00 NZDT"
will be written as"2009-12-31 20:00:00"
.
Value
A tibble, data frame variant with nice defaults.
Variable labels are stored in the "label" attribute of each variable. It is not printed on the console, but the RStudio viewer will show it.
write_sav()
returns the input data
invisibly.
Details
Currently haven can read and write logical, integer, numeric, character
and factors. See labelled_spss()
for how labelled variables in
SPSS are handled in R.
Examples
path <- system.file("examples", "iris.sav", package = "haven")
read_sav(path)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <dbl+lbl>
#> 1 5.1 3.5 1.4 0.2 1 [setosa]
#> 2 4.9 3 1.4 0.2 1 [setosa]
#> 3 4.7 3.2 1.3 0.2 1 [setosa]
#> 4 4.6 3.1 1.5 0.2 1 [setosa]
#> 5 5 3.6 1.4 0.2 1 [setosa]
#> 6 5.4 3.9 1.7 0.4 1 [setosa]
#> 7 4.6 3.4 1.4 0.3 1 [setosa]
#> 8 5 3.4 1.5 0.2 1 [setosa]
#> 9 4.4 2.9 1.4 0.2 1 [setosa]
#> 10 4.9 3.1 1.5 0.1 1 [setosa]
#> # ℹ 140 more rows
tmp <- tempfile(fileext = ".sav")
write_sav(mtcars, tmp)
read_sav(tmp)
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows